

Directed Self-assembly of Metal Oxide Nanodots: Cu₂O on SrTiO₃ (100)

Yingge Du, Robert Hull, James F. Groves, Igor Lyubinetsky¹ and Thevuthasan, Suntharampillai¹
Department of Materials Science and Engineering, University of Virginia, Charlotteeville, VA 22904, U.S.A

¹Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A

Cu₂O QDs formed epitaxially on single crystal substrates (a) Cu₂O on SrTiO₃, by Lyubinetsky et al. (2003), (b) Cu₂O on InP, by Run

-- 600

metal oxide formation on a planar surface appears to be quasirandom.

XPS 2p_{3/2} (a) and AES Cu L3VV (b) sp

As with QD self-assembly in Ge/Si.

The need for position control:

- Random to reproducibility Better control of density & periodicity
- Passive to active nanostructures
- Potential applications: QCA, QD lasers. Examples of simple QCA arra for Boolean logic, Porod, (1998).

OPA-MBE Growth of Self-assembled Cu₂O QDs

Epitaxial growth: AFM images after 3, 7, 14 Å Cu₂O deposition and corresponding size and height distributions. HRXRD: Cu₂O (100) // SrTiO₃ (100) Process conditions: 700 °C, 1.1x10-5 Torr oxygen partial pressure. Island shape: RHEED: AFM scan shows 53° side No wetting lave angle, corresponding to Before Growth

Ideal for directed self-assembly: Relatively narrow size distribution, (for predictable properties)

 $\{111\}$ plane ($\theta = 54.7^{\circ}$)

- Initially, island size changes slowly with thickness. (same as abv) Initially, island density increase with thickness. (density control)
- Island size depends exponentially on T. (size control)

Directed Self-assembly: nano-scale patterning

- Comparison results: (on the same sample)

 FIB modification spots are always the preferred nucleation sites.

 Island size is much larger and comparable to that of patterned pit.
- FIB created pits appear to be the sink for migrating adatoms. Island density is closely related with "actual" amount of material.
- Continuous deposition after saturation will result in "extra" islands.
- Dose, spacing, and thickness can be tailored to get best results.

Experiment Details

 Challenges were used to confirm the Cu₂O stoichiometry. From Lyubinetsky, et al. J. Appl. Phys., 2003 Formation of single phase Cu₂O. Find growth temperature that lead to desirable island size. Create compatible FIB patterns comparable to the dot density

Directed Self-assembly: micro-scale patterning

Best result: (a) AFM image showing the preferential growth of Cu₂O islands on the edges of the FIB implant zones, (b) a higher resolution scan of one FIB implant zone. Process conditions: 1 µm spacing pattern, 725 °C. 7 Å film thickness

Comparison results: On the same sample, lower dosage (left) did not trigger controlled nucleation.

AFM image and line scan of (a) a substr following FIB modification. Ion density 5.63x10¹⁶ ions/cm² with 4.43x10⁶ Ga ior spot. (b) the same region after substrate annealing. (c) after nanodot synthesis.

AFM image and line scan of (a) a region following FIB modification. Ion density was 5.63x10¹⁸ ions/cm². (b) the same modified region after substrate etching and annealing (c) the same region after nanodot synthesis.

Conclusions and Discussions

- We have demonstrated that there are two ways to guide the growth of Cu₂O nanodots on SrTiO₃ (100) substrates.
- Under certain oxygen plasma assisted molecular beam epitaxy growth conditions, it was then possible to grow Cu_2O immediately adjacent to or on top of the FIB modified
- zone.

 For the larger topographical features (corresponding to higher Ga+ doses), Cu₂O nanodots were found to grow at the edge of the induced topography.
- For the smaller topographical features and smaller FIB pattern spacing, Cu₂O nanodots were found to grow directly on top of the topography
- More detailed study of the influence of FIB surface modification upon nanodot growth location is needed to understand the fundamental factors motivating guided growth.
- The surface and interface chemistry, topography, defect structure, and / or stress surrounding each of the FIB modified regions are possible motivators of the different growth patterns
- The ability to guide the growth of metal oxide nanodots raises the prospect of incorporating the useful properties of metal oxides into a host of engineered devices for nanoelectronics, spintronics and other high-performance applications.

Acknowledgements

This work was supported by the National Science Foundation through the MRSEC Center for Nanoscopic Materials Design under Award Number DMR-0080016 and by the Virginia Center for Innovative Technology through awards MAT-01-003 and MAT-02-004. A portion of the research described here was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sopnoscred by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboration.